lcorner.gif (165 bytes)
     
.

 

 

 

 

 

Is Lithium-ion the Ideal Battery?
 

For many years, nickel-cadmium had been the only suitable battery for portable equipment from wireless communications to mobile computing. Nickel-metal-hydride and lithium-ion emerged In the early 1990s, fighting nose-to-nose to gain customer's acceptance. Today, lithium-ion is the fastest growing and most promising battery chemistry.

 

 

The New Lithium-ion Battery for the Lexis Light now only weights seven pounds, it has (2) 18 AH Cells Offering three times the power of the standard battery and gives the Lexis Light 3 times more power meaning it will go up steeper inclines and travel three times as far as sealed lead acid. The New Lithium-ion Battery for the Lexis Light can be fully charged in under 30 minutes and is good for 5000 cycles, that's ten time more life then the standard lead acid battery. The New Lithium-ion Battery for the Lexis Light is not only FAA approved it is recommended by airlines across the country and throughout the world..


 

The lithium-ion battery
 

Pioneer work with the lithium battery began in 1912 under G.N. Lewis but it was not until the early 1970s when the first non-rechargeable lithium batteries became commercially available. lithium is the lightest of all metals, has the greatest electrochemical potential and provides the largest energy density for weight.
 
Attempts to develop rechargeable lithium batteries failed due to safety problems. Because of the inherent instability of lithium metal, especially during charging, research shifted to a non-metallic lithium battery using lithium ions. Although slightly lower in energy density than lithium metal, lithium-ion is safe, provided certain precautions are met when charging and discharging. In 1991, the Sony Corporation commercialized the first lithium-ion battery. Other manufacturers followed suit. 
 
The energy density of lithium-ion is typically twice that of the standard nickel-cadmium. There is potential for higher energy densities. The load characteristics are reasonably good and behave similarly to nickel-cadmium in terms of discharge. The high cell voltage of 3.6 volts allows battery pack designs with only one cell. Most of today's mobile phones run on a single cell. A nickel-based pack would require three 1.2-volt cells connected in series.
 
Lithium-ion is a low maintenance battery, an advantage that most other chemistries cannot claim. There is no memory and no scheduled cycling is required to prolong the battery's life. In addition, the self-discharge is less than half compared to nickel-cadmium, making lithium-ion well suited for modern fuel gauge applications. lithium-ion cells cause little harm when disposed.
 
Manufacturers are constantly improving lithium-ion. New and enhanced chemical combinations are introduced every six months or so. With such rapid progress, it is difficult to assess how well the revised battery will age. 
 
Storage in a cool place slows the aging process of lithium-ion (and other chemistries). Manufacturers recommend storage temperatures of 15C (59F). In addition, the battery should be partially charged during storage. The manufacturer recommends a 40% charge.
 
The most economical lithium-ion battery in terms of cost-to-energy ratio is the cylindrical 18650 (size is 18mm x 65.2mm). This cell is used for mobile computing and other applications that do not demand ultra-thin geometry. If a slim pack is required, the prismatic lithium-ion cell is the best choice. These cells come at a higher cost in terms of stored energy.
 

Advantages
 

  • High energy density - potential for yet higher capacities.
     
  • Does not need prolonged priming when new. One regular charge is all that's needed.
     
  • Relatively low self-discharge - self-discharge is less than half that of nickel-based batteries.
     
  • Low Maintenance - no periodic discharge is needed; there is no memory.
     
  • Specialty cells can provide very high current to applications such as power tools.
     

Limitations

 

  • Requires protection circuit to maintain voltage and current within safe limits.
     
  • Expensive to manufacture - about 40 percent higher in cost than nickel-cadmium.
     

The lithium polymer battery
 

The lithium-polymer differentiates itself from conventional battery systems in the type of electrolyte used. The original design, dating back to the 1970s, uses a dry solid polymer electrolyte. This electrolyte resembles a plastic-like film that does not conduct electricity but allows ions exchange (electrically charged atoms or groups of atoms). The polymer electrolyte replaces the traditional porous separator, which is soaked with electrolyte.

The dry polymer design offers simplifications with respect to fabrication, ruggedness, safety and thin-profile geometry. With a cell thickness measuring as little as one millimeter (0.039 inches), equipment designers are left to their own imagination in terms of form, shape and size. 
 

Advantages
 

  • Very low profile - batteries resembling the profile of a credit card are feasible.
  • Flexible form factor - manufacturers are not bound by standard cell formats. With high volume, any reasonable size can be produced economically.
  • Lightweight - gelled electrolytes enable simplified packaging by eliminating the metal shell.
  • Improved safety - more resistant to overcharge; less chance for electrolyte leakage.
     

Limitations

 

  • Lower energy density and decreased cycle count compared to lithium-ion.
  • Expensive to manufacture.
  • No standard sizes. Most cells are produced for high volume consumer markets.
  • Higher cost-to-energy ratio than lithium-ion
     

Restrictions on lithium content for air travel
 

Air travelers ask the question, "How much lithium in a battery am I allowed to bring on board?" We differentiate between two battery types: Lithium metal and lithium-ion. 
Most lithium metal batteries are non-rechargeable and are used in film cameras. Lithium-ion packs are rechargeable and power laptops, cellular phones and camcorders. Both battery types, including spare packs, are allowed as carry-on but cannot exceed the following lithium content: 
- 2 grams for lithium metal or lithium alloy batteries 
- 8 grams for lithium-ion batteries 

Lithium-ion batteries exceeding 8 grams but no more than 25 grams may be carried in carry-on baggage if individually protected to prevent short circuits and are limited to two spare batteries per person. 

How do I know the lithium content of a lithium-ion battery? From a theoretical perspective, there is no metallic lithium in a typical lithium-ion battery. There is, however, equivalent lithium content that must be considered. For a lithium-ion cell, this is calculated at 0.3 times the rated capacity (in ampere-hours). 

Example: A 2Ah 18650 Li-ion cell has 0.6 grams of lithium content. On a typical 60 Wh laptop battery with 8 cells (4 in series and 2 in parallel), this adds up to 4.8g. To stay under the 8-gram UN limit, the largest battery you can bring is 96 Wh. This pack could include 2.2Ah cells in a 12 cells arrangement (4s3p). If the 2.4Ah cell were used instead, the pack would need to be limited to 9 cells (3s3p).
 

Restrictions on shipment of lithium-ion batteries
 

  • Anyone shipping lithium-ion batteries in bulk is responsible to meet transportation regulations. This applies to domestic and international shipments by land, sea and air. 
     
  • Lithium-ion cells whose equivalent lithium content exceeds 1.5 grams or 8 grams per battery pack must be shipped as "Class 9 miscellaneous hazardous material." Cell capacity and the number of cells in a pack determine the lithium content. 
     
  • Exception is given to packs that contain less than 8 grams of lithium content. If, however, a shipment contains more than 24 lithium cells or 12 lithium-ion battery packs, special markings and shipping documents will be required. Each package must be marked that it contains lithium batteries.
     
  • All lithium-ion batteries must be tested in accordance with specifications detailed in UN 3090 regardless of lithium content (UN manual of Tests and Criteria, Part III, subsection 38.3). This precaution safeguards against the shipment of flawed batteries. 
     
  • Cells & batteries must be separated to prevent short-circuiting and packaged in strong boxes.

 

 

 

Return To The Lexis Light Scooter Information Page.

 
     
     

 

 


 

 

 

 
 
 
 
 
 
 
 

Resource Links

 
 
 
 
 



Connected With

 

 

Copyright 2011 Discover My Mobility All Rights Reserved